Received 27 March 2003

Accepted 31 March 2003

Online 16 April 2003

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Eric Rivard, Alan J. Lough* and Ian Manners

Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

Correspondence e-mail: alough@chem.utoronto.ca

Key indicators

Single-crystal X-ray study T = 150 KMean $\sigma(\text{Si-C}) = 0.007 \text{ Å}$ R factor = 0.036 wR factor = 0.088Data-to-parameter ratio = 26.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Di-µ-chloro-bis({[bis(trimethylsilyl)amino]dichlorophosphoraniminato}trichlorotantalum(V))

The title compound crystallizes as a centrosymmetric chlorinebridged dimer, $[Cl_4Ta-N=PCl_2-N(SiMe_3)_2]_2$ or $[Ta_2Cl_8-(C_6H_{18}Cl_2N_2PSi_2)_2]$, with one monomer in the asymmetric unit. The Ta atoms adopt a distorted octahedral geometry with the bridging Cl atom and the N atom of the phosphoraniminate ligand occupying axial positions. The Ta-N-P angle within the complex is 155.9 (2)°, with a Ta-N bond length of 1.827 (4) Å; similar P-N distances are observed within the NPN moiety [1.578 (4) and 1.600 (4) Å]. The P atom exists in a distorted tetrahedral geometry, while the silylated terminal N atom is close to planar [angle sum = 358.8 (3)°].

Comment

As part our investigations into the use of novel inorganic heterocycles as monomers for ring-opening polymerization (ROP) reactions (Manners, 1996; Gates & Manners, 1997), we explored the reaction of the silylated aminoiminophosphoranimine (Me₃Si)₂NPCl₂=NSiMe₃ with various metal halides to give four-membered *M*NPN rings (M = group 4 or 5 metal) (Rivard *et al.*, 2001, 2002). In the reaction of TaCl₅ with (Me₃Si)₂NPCl₂=NSiMe₃, we occasionally also obtained the linear isomer [Cl₄Ta-N=PCl₂-N(SiMe₃)₂]₂, (I).

Experimental

Under an atmosphere of N₂, one equivalent of $(Me_3Si)_2NPCl_2$ =N-SiMe₃ (1.09 g, 3.12 mmol; Niecke & Bitter, 1976) was reacted with TaCl₅ (1.04 g, 2.90 mmol) at 298 K in 70 ml of dichloromethane. After 16 h, the volatiles were removed and the remaining white precipitate was washed with hexanes (2 × 50 ml) and recrystallized from dichloromethane (2 ml, 270 K) to give colourless blocks of (I). Yield: 0.11 g (6%). ³¹P{¹H} NMR (CDCl₃): 19.1 (*s*) p.p.m.; ¹H NMR (CDCl₃): 0.66 (*s*) p.p.m.

Crystal data

[Ta2Cl8(C6H18Cl2N2PSi2)2] $D_{\rm r} = 2.042 {\rm Mg} {\rm m}^{-3}$ $M_{\star} = 1198.05$ Mo $K\alpha$ radiation Monoclinic, $P2_1/c$ Cell parameters from 12 859 a = 9.2497 (3) Åreflections b = 12.3549(3) Å $\theta = 2.6 - 27.5^{\circ}$ $\mu = 6.66~\mathrm{mm}^{-1}$ c = 17.4418 (6) Å $\beta = 102.209 (12)^{\circ}$ T = 150 (1) K $V = 1948.15 (14) \text{ Å}^3$ Plate, colourless Z = 2 $0.20 \times 0.20 \times 0.15$ mm

 ${\ensuremath{\mathbb C}}$ 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

View of the centrosymmetric dimer of (I) with the crystallographic labelling scheme [symmetry code: (i) 1 - x, 1 - y, -z]. Displacement ellipsoids are at the 30% probability level. The H atoms are not shown.

Figure 2

Packing diagram of (I) (Spek, 2002). The following are the atom colour codes: purple Ta, green Cl, pink P, brown Si, blue N and black C.

Data collection

Nonius KappaCCD diffractometer	3734 reflections with $I > 2\sigma(I)$
φ scans and ω scans with κ offsets	$R_{\rm int} = 0.050$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(SORTAV; Blessing, 1995)	$h = -11 \rightarrow 11$
$T_{\min} = 0.411, T_{\max} = 0.524$	$k = -15 \rightarrow 16$
11 340 measured reflections	$l = -18 \rightarrow 22$
4422 independent reflections	

 $1/[\sigma^2(F_o^2) + (0.045P)^2$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.045P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.036$	+ 0.0565P]
$wR(F^2) = 0.088$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
4422 reflections	$\Delta \rho_{\rm max} = 2.28 \text{ e} \text{ Å}^{-3}$
169 parameters	$\Delta \rho_{\rm min} = -1.40 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	

Table 1 Selected geometric parameters (Å, °).

Ta1-N1	1.827 (4)	Cl5-P1	1.9888 (17)
Ta1-Cl1	2.3204 (13)	Cl6-P1	1.9959 (16)
Ta1-Cl2	2.3346 (13)	P1-N1	1.578 (4)
Ta1-Cl4	2.3438 (12)	P1-N2	1.600 (4)
Ta1-Cl3	2.4688 (11)	Si1-N2	1.840 (4)
Ta1-Cl3 ⁱ	2.7177 (12)	Si2-N2	1.833 (4)
N1-Ta1-Cl1	102.65 (12)	Cl1-Ta1-Cl3i	87.55 (4)
N1-Ta1-Cl2	97.35 (12)	Cl2-Ta1-Cl3 ⁱ	83.05 (4)
Cl1-Ta1-Cl2	90.27 (5)	Cl4-Ta1-Cl3i	82.65 (4)
N1-Ta1-Cl4	96.55 (12)	Cl3-Ta1-Cl3 ⁱ	76.56 (4)
Cl1-Ta1-Cl4	90.09 (5)	Ta1-Cl3-Ta1 ⁱ	103.44 (4)
Cl2-Ta1-Cl4	165.66 (5)	Cl5-P1-Cl6	102.92 (8)
N1-Ta1-Cl3	93.24 (12)	P1-N1-Ta1	155.9 (2)
Cl1-Ta1-Cl3	164.11 (5)	P1-N2-Si2	121.0 (2)
Cl2-Ta1-Cl3	87.61 (4)	P1-N2-Si1	118.1 (2)
Cl4-Ta1-Cl3	88.13 (4)	Si2-N2-Si1	119.7 (2)
$N1-Ta1-Cl3^i$	169.78 (11)		()

Symmetry code: (i) 1 - x, 1 - y, -z.

All H atoms were placed in calculated positions, with C-H distances of 0.98 Å, and included in the refinement in riding motion approximation with $U_{iso} = 1.5U_{eq}$ of the carrier atom. The methyl groups were allowed to rotate but not to tip. The two largest electrondensity peaks of 2.28 and 2.17 e $Å^{-3}$ found in the final difference Fourier were within 1.0 Å of the Ta atom. The next largest peak was $0.81 \text{ e} \text{ Å}^{-3}$.

Data collection: COLLECT (Nonius, 1997-2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledge NSERC Canada and the University of Toronto for funding.

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Gates, D. P. & Manners, I. (1997). J. Chem. Soc. Dalton Trans. pp. 2525-2532.
- Manners, I. (1996). Angew. Chem. Int. Ed. Engl. 35, 1602-1621.
- Niecke, E. & Bitter, W. (1976). Chem. Ber. 109, 415-425.
- Nonius (1997-2002). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.
- Rivard, E., Honeyman, C. H., McWilliams, A. R., Lough, A. J. & Manners, I. (2001). Inorg. Chem. 40, 1489-1495.
- Rivard, E., McWilliams, A. R., Lough, A. J. & Manners, I. (2002). J. Chem. Soc. Dalton Trans. pp. 2173-2179.
- Sheldrick, G. M. (2001). SHELXTL/PC. Windows NT Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2002). PLATON. University of Utrecht, The Netherlands.