Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Di- μ-chloro-bis(\{[bis(trimethylsilyl)amino]dichlorophosphoraniminato\}trichlorotantalum(V))

Eric Rivard, Alan J. Lough* and Ian Manners

Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

Correspondence e-mail:
alough@chem.utoronto.ca

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{Si}-\mathrm{C})=0.007 \AA$
R factor $=0.036$
$w R$ factor $=0.088$
Data-to-parameter ratio $=26.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography

Printed in Great Britain - all rights reserved

The title compound crystallizes as a centrosymmetric chlorinebridged dimer, $\left[\mathrm{Cl}_{4} \mathrm{Ta}-\mathrm{N}=\mathrm{PCl}_{2}-\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}$ or $\left[\mathrm{Ta}_{2} \mathrm{Cl}_{8^{-}}\right.$ $\left(\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{PSi}_{2}\right)_{2}$], with one monomer in the asymmetric unit. The Ta atoms adopt a distorted octahedral geometry with the bridging Cl atom and the N atom of the phosphoraniminate ligand occupying axial positions. The $\mathrm{Ta}-\mathrm{N}-\mathrm{P}$ angle within the complex is $155.9(2)^{\circ}$, with a $\mathrm{Ta}-\mathrm{N}$ bond length of 1.827 (4) \AA; similar $\mathrm{P}-\mathrm{N}$ distances are observed within the NPN moiety [1.578 (4) and 1.600 (4) Å]. The P atom exists in a distorted tetrahedral geometry, while the silylated terminal N atom is close to planar [angle sum $=358.8(3)^{\circ}$].

Comment

As part our investigations into the use of novel inorganic heterocycles as monomers for ring-opening polymerization (ROP) reactions (Manners, 1996; Gates \& Manners, 1997), we explored the reaction of the silylated aminoiminophosphoranimine $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}{ }_{2} \mathrm{NPCl}_{2}=\mathrm{NSiMe}_{3}\right.$ with various metal halides to give four-membered M NPN rings ($M=$ group 4 or 5 metal) (Rivard et al., 2001, 2002). In the reaction of TaCl_{5} with $\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{NPCl}_{2}=\mathrm{NSiMe}_{3}\right.$, we occasionally also obtained the linear isomer $\left[\mathrm{Cl}_{4} \mathrm{Ta}-\mathrm{N}=\mathrm{PCl}_{2}-\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}$, (I).

(I)

Experimental

Under an atmosphere of N_{2}, one equivalent of $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{NPCl}_{2}=\mathrm{N}$ $\mathrm{SiMe}_{3}(1.09 \mathrm{~g}, 3.12 \mathrm{mmol}$; Niecke \& Bitter, 1976) was reacted with $\mathrm{TaCl}_{5}(1.04 \mathrm{~g}, 2.90 \mathrm{mmol})$ at 298 K in 70 ml of dichloromethane. After 16 h , the volatiles were removed and the remaining white precipitate was washed with hexanes $(2 \times 50 \mathrm{ml})$ and recrystallized from dichloromethane ($2 \mathrm{ml}, 270 \mathrm{~K}$) to give colourless blocks of (I). Yield: $0.11 \mathrm{~g}(6 \%) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): 19.1$ (s) p.p.m.; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 0.66(s)$ p.p.m.

Crystal data

$\left[\mathrm{Ta}_{2} \mathrm{Cl}_{8}\left(\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{PSi}_{2}\right)_{2}\right]$
$M_{r}=1198.05$
Monoclinic, P_{1} / c
$a=9.2497(3) \AA$
$b=12.3549(3) \AA$
$c=17.4418(6) \AA$
$\beta=102.209(12)^{\circ}$
$V=1948.15(14) \AA^{3}$
$Z=2$
$\left[\mathrm{Ta}_{2} \mathrm{Cl}_{8}\left(\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{PSi}_{2}\right)_{2}\right]$
Monoclinic, $P 2_{d} / c$
$a=9.2497(3) \mathrm{A}$
$b=12.3549$ (3) \AA
$c=17.4418$ (6) \AA
$V=1948.15(14) \AA^{3}$
$Z=2$

$$
D_{x}=2.042 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 12859
reflections
$\theta=2.6-27.5^{\circ}$
$\mu=6.66 \mathrm{~mm}^{-1}$
$T=150$ (1) K
Plate, colourless
$0.20 \times 0.20 \times 0.15 \mathrm{~mm}$

Received 27 March 2003
Accepted 31 March 2003
Online 16 April 2003

View of the centrosymmetric dimer of (I) with the crystallographic labelling scheme [symmetry code: (i) $1-x, 1-y,-z$]. Displacement ellipsoids are at the 30% probability level. The H atoms are not shown.

Figure 2
Packing diagram of (I) (Spek, 2002). The following are the atom colour codes: purple Ta, green Cl , pink P , brown Si , blue N and black C .

Data collection

Nonius KappaCCD diffractometer φ scans and ω scans with κ offsets Absorption correction: multi-scan (SORTAV; Blessing, 1995)
$T_{\text {min }}=0.411, T_{\text {max }}=0.524$
11340 measured reflections 4422 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.088$
$S=1.03$
4422 reflections
169 parameters
H -atom parameters constrained

3734 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-11 \rightarrow 11$
$k=-15 \rightarrow 16$
$l=-18 \rightarrow 22$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.045 P)^{2}\right. \\
& \quad+0.0565 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=2.28 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{Ta} 1-\mathrm{N} 1$	$1.827(4)$	$\mathrm{Cl} 5-\mathrm{P} 1$	$1.9888(17)$
$\mathrm{Ta} 1-\mathrm{Cl} 1$	$2.3204(13)$	$\mathrm{Cl} 6-\mathrm{P} 1$	$1.9959(16)$
$\mathrm{Ta} 1-\mathrm{Cl} 2$	$2.3346(13)$	$\mathrm{P} 1-\mathrm{N} 1$	$1.578(4)$
$\mathrm{Ta} 1-\mathrm{Cl} 4$	$2.3438(12)$	$\mathrm{P} 1-\mathrm{N} 2$	$1.600(4)$
$\mathrm{Ta} 1-\mathrm{Cl} 3$	$2.4688(11)$	$\mathrm{Si} 1-\mathrm{N} 2$	$1.840(4)$
$\mathrm{Ta} 1-\mathrm{Cl} 3^{\mathrm{i}}$	$2.7177(12)$	$\mathrm{Si} 2-\mathrm{N} 2$	$1.833(4)$
$\mathrm{N} 1-\mathrm{Ta} 1-\mathrm{Cl} 1$	$102.65(12)$	$\mathrm{Cl} 1-\mathrm{Ta} 1-\mathrm{Cl} 3^{\mathrm{i}}$	$87.55(4)$
$\mathrm{N} 1-\mathrm{Ta} 1-\mathrm{Cl} 2$	$97.35(12)$	$\mathrm{Cl} 2-\mathrm{T} 1-\mathrm{Cl}{ }^{\mathrm{i}}$	$83.05(4)$
$\mathrm{Cl} 1-\mathrm{Ta} 1-\mathrm{Cl} 2$	$90.27(5)$	$\mathrm{Cl} 4-\mathrm{Ta} 1-\mathrm{Cl} 3^{\mathrm{i}}$	$82.65(4)$
$\mathrm{N} 1-\mathrm{Ta} 1-\mathrm{Cl} 4$	$96.55(12)$	$\mathrm{Cl} 3-\mathrm{Ta} 1-\mathrm{Cl} 3^{\mathrm{i}}$	$76.56(4)$
$\mathrm{Cl} 1-\mathrm{Ta} 1-\mathrm{Cl} 4$	$90.09(5)$	$\mathrm{Ta} 1-\mathrm{Cl} 3-\mathrm{Ta} 1^{\mathrm{i}}$	$103.44(4)$
$\mathrm{Cl} 2-\mathrm{Ta} 1-\mathrm{Cl} 4$	$165.66(5)$	$\mathrm{Cl} 5-\mathrm{P} 1-\mathrm{Cl} 6$	$102.92(8)$
$\mathrm{N} 1-\mathrm{Ta} 1-\mathrm{Cl} 3$	$93.24(12)$	$\mathrm{P} 1-\mathrm{N} 1-\mathrm{Ta} 1$	$155.9(2)$
$\mathrm{Cl} 1-\mathrm{Ta} 1-\mathrm{Cl} 3$	$164.11(5)$	$\mathrm{P} 1-\mathrm{N} 2-\mathrm{Si} 2$	$121.0(2)$
$\mathrm{Cl} 2-\mathrm{Ta} 1-\mathrm{Cl} 3$	$87.61(4)$	$\mathrm{P} 1-\mathrm{N} 2-\mathrm{Si} 1$	$118.1(2)$
$\mathrm{Cl} 4-\mathrm{Ta} 1-\mathrm{Cl} 3$	$88.13(4)$	$\mathrm{Si} 2-\mathrm{N} 2-\mathrm{Si} 1$	$119.7(2)$
$\mathrm{N} 1-\mathrm{Ta} 1-\mathrm{Cl} 3^{\mathrm{i}}$	$169.78(11)$		

Symmetry code: (i) $1-x, 1-y,-z$.
All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances of $0.98 \AA$, and included in the refinement in riding motion approximation with $U_{\text {iso }}=1.5 U_{\text {eq }}$ of the carrier atom. The methyl groups were allowed to rotate but not to tip. The two largest electrondensity peaks of 2.28 and $2.17 \mathrm{e} \AA^{-3}$ found in the final difference Fourier were within $1.0 \AA$ of the Ta atom. The next largest peak was $0.81 \mathrm{e}^{-3}$.

Data collection: COLLECT (Nonius, 1997-2002); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

The authors acknowledge NSERC Canada and the University of Toronto for funding.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Gates, D. P. \& Manners, I. (1997). J. Chem. Soc. Dalton Trans. pp. 2525-2532.
Manners, I. (1996). Angew. Chem. Int. Ed. Engl. 35, 1602-1621.
Niecke, E. \& Bitter, W. (1976). Chem. Ber. 109, 415-425.
Nonius (1997-2002). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Rivard, E., Honeyman, C. H., McWilliams, A. R., Lough, A. J. \& Manners, I. (2001). Inorg. Chem. 40, 1489-1495.

Rivard, E., McWilliams, A. R., Lough, A. J. \& Manners, I. (2002). J. Chem. Soc. Dalton Trans. pp. 2173-2179.
Sheldrick, G. M. (2001). SHELXTL/PC. Windows NT Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2002). PLATON. University of Utrecht, The Netherlands.

